Druckansicht der Internetadresse:

Fakultät für Biologie, Chemie und Geowissenschaften

Umweltgeochemie - Prof. Dr. Britta Planer-Friedrich

Seite drucken

Doktorarbeit

Bedeutung von Sulfid, Polysulfiden und Elementarschwefel in reinen Schwefel und Schwefel-Metall(oid) Systemen

Regina Lohmayer (01/2011-05/2015)

Betreuer: Britta Planer-Friedrich

Schwefel ist ein Element, das ubiquitär in der Umwelt vorkommt und Oxidationsstufen zwischen +6 und -2 annehmen kann. Zwischen den thermodynamisch stabilen Endgliedern Sulfat und Sulfid gibt es eine Reihe intermediärer Schwefelspezies, wie beispielsweise Sulfit, Polythionate, Thiosulfat, elementaren Schwefel und Polysulfide. Polysulfide sind reduzierende und nukleophile Schwefelketten der Form Sn 2- (n ≥ 2). Aufgrund ihrer hohen Reaktivität und Instabilität stellt die Bestimmung von Polysulfiden eine analytische Herausforderung dar. Der verlässlichste analytische Ansatz ist zum gegenwärtigen Zeitpunkt die Derivatisierung anorganischer Polysulfide zur Bildung stabilerer organischer Polysulfane, die chromatographisch analysiert werden können. Generell wird angenommen, dass intermediäre Schwefelspezies im Allgemeinen und Polysulfide im Besonderen entscheidend sind für eine Reihe von Redox- und Transformationsprozessen von Metall(oid)en. Allerdings gibt es dazu bisher kaum analytische Daten.

Das Ziel der vorliegenden Studie war, die Rolle von Sulfid, elementarem Schwefel und insbesondere Polysulfiden für abiotische und biotische Redoxprozesse in Schwefel-Metal(loid)-Systemen zu untersuchen. Offene Fragen, die aus früheren Arbeiten zur Interaktion von verschiedenen Schwefelspezies mit Eisen, Arsen und Molybdän resultierten, wurden aufgegriffen und mit besonderem Schwerpunkt auf der Schwefelspeziierung untersucht.

Die Disproportionierung von elementarem Schwefel zählt zu den ältesten Stoffwechselwegen in der Erdgeschichte und wirft noch immer viele Fragen auf. Bislang wurde festgestellt, dass das Wachstum von Mikroorganismen durch Disproportionierung von elementarem Schwefel von der Anwesenheit eines Sulfidfängers wie Eisen abhängt. In der vorliegenden Studie wurde erstmals das Wachstum von haloalkaliphilen Bakterien durch Disproportionierung von elementarem Schwefel gezeigt und sowohl in An- als auch in Abwesenheit von Eisen beobachtet. Dies wurde durch die substanzielle Bildung von Polysulfiden unter anoxischen und alkalischen Bedingungen ermöglicht, was zur Abnahme von freiem Sulfid in Lösung führte und damit die Disproportionierung von elementarem Schwefel thermodynamisch begünstigte.

Die Reaktion von gelöstem Sulfid mit Eisen(III)-(oxyhydr)oxiden kann zur Bildung von thermodynamisch stabilem Pyrit, dem am häufigsten vorkommenden sulfidhaltigen Mineral, führen. In früheren Studien wurden verschiedene Reaktionswege der Pyritbildung in der wässrigen Phase bestimmt. In der vorliegenden Arbeit wurden im Zuge der Sulfidierung von Eisen(III)- (oxyhydr)oxiden Polysulfide auf den Mineraloberflächen gefunden. Die Konzentration von Disulfid, der dominierenden Polysulfidspezies, stieg mit der Reaktivität der Eisenminerale an, die auch positiv mit der Kinetik der Pyritbildung korreliert. Insgesamt wurde der Schluss gezogen, dass Oberflächenassoziierte Polysulfide eine entscheidende Rolle als Vorläufer von Pyrit spielen.

Die reduktive Auflösung von Eisen(III)-(oxyhydr)oxiden ist entscheidend im Hinblick auf die Freisetzung von adsorbierten Nähr- oder Schadstoffen. Der Auflösungsprozess kann indirekt durchSchwefel-reduzierende Bakterien beeinflusst werden. In einer früheren Studie wurden Thiosulfat, elementarer Schwefel oder Polysulfide als mögliche Elektronen-Shuttles zwischen Bakterien und Eisen(III)-Mineralen vorgeschlagen. Wir fanden elementaren Schwefel an der Mineraloberfläche als dominierendes Schwefel-Oxidationsprodukt. Neben Thiosulfat, Tetrathionat, Sulfit und Sulfid konnten Polysulfide den Elektronen-Shuttle-Prozess initiieren, waren aber von geringerer Bedeutung für den Shuttle-Prozess an sich. Insgesamt gelang es, einen detaillierten Einblick in die Rolle verschiedener Schwefelspezies für die mikrobiell vermittelte Reduktion von Eisen(III)-Mineralen zu erhalten.

Lösliche Arsen-Schwefel-Spezies sind wesentlich für den Kreislauf von Arsen unter sulfidischen Bedingungen. In früheren Studien wurde die Bildung dreiwertiger Thioarsenite durch die Reaktion von Arsenit mit Sulfid und die schnelle Oxidation zu fünfwertigen Thioarsenaten beobachtet. Es wurde vermutet, dass Letztere sich auch direkt durch die Reaktion von Arsenit mit Polysulfiden bilden. In vorliegender Studie wurde beobachtet, dass Polysulfide mit Arsenit zu Monothioarsenat reagieren. Außerdem schien die im Vergleich zu Sulfid höhere Nukleophilie von Polysulfiden die Bildung höher thiolierter Arsenate zu beschleunigen. Die Bildung von Polysulfiden und Monothioarsenat wurde auch in biotischen Systemen während des Wachstums eines anaeroben haloalkaliphilen Bakteriums gefunden, das die Reduktion von Arsenat mit der Oxidation von Sulfid koppelt. Zusätzlich wurde Monothioarsenat mikrobiell zu Arsenit und Polysulfiden disproportioniert. Frühere Annahmen bestätigend, spielten Polysulfide eine entscheidende Rolle bei der Bildung von Thioarsenaten.

Nachweise für eine substanzielle mikrobielle Beschleunigung von Thioarsenat-Transformationsprozessen wurden bereits in früheren Arbeiten gefunden. In der vorliegenden Studie war die Umwandlung von Monothioarsenat in Anwesenheit eines hyperthermophilen Bakteriums deutlich schneller als unter abiotischen Bedingungen. Abiotisch fand eine Desulfidierung von Monothioarsenat zu Arsenat und Sulfid statt. Sulfid wiederum wurde bei hoher Temperatur und unter oxischen Bedingungen zu elementarem Schwefel und Thiosulfat oxidiert. Die Bakterien beschleunigten die Umwandlung von Monothioarsenat hauptsächlich durch die Oxidation der abiotisch gebildeten intermediären Schwefelspezies zu Sulfat. Insgesamt wurde ein entscheidender Einfluss der Schwefel-Redoxchemie auf Thioarsenat-Transformationsprozesse festgestellt.

Für Thiomolybdatspezies wird angenommen, dass ihre Bildung entscheidend ist für die Ablagerung von Molybdän in Sedimenten, was als wichtiger Indikator zur Rekonstruktion von Paläoredoxbedingungen dient. Allerdings wurden Thiomolybdate bisher nicht in der Umwelt nachgewiesen. In Laborversuchen stellten wir fest, dass Rate und Ausmaß der Thiomolybdatbildung mit steigendem Sulfid zu Molybdat Überschuss anstiegen und dass ein pH-Wert von 7 am günstigsten für die nukleophile Substitutionsreaktion war. Polysulfide hatten keinen Einfluss auf die Thiomolybdatbildung. Wir optimierten die Trennung von Thiomolybdaten mittels Ionenpaar-Chromatographie zur Kopplung mit einem induktiv gekoppelten Plasma-Massenspektrometer, um nanomolare Thiomolybdat-Konzentrationen analysieren zu können. Mit dieser neuen Methode konnte die spontane Bildung von Thiomolybdaten in euxinischen Salzwasserproben nach Zugabe eines Molybdat-Spikes beobachtet werden. Darüber hinaus wurde erstmals das natürliche Vorkommen von Thiomolybdaten in sulfidischen Geothermalwässern nachgewiesen.

Insgesamt konnte gezeigt werden, dass Sulfid, elementarer Schwefel und besonders Polysulfide eine entscheidende Rolle für eine Reihe von abiotischen und biotischen Umwandlungsprozessen der Metall(oid)e Eisen, Arsen und Molybdän spielen. Die Schwefelspeziierung hat damit allgemein einen großen Einfluss auf die Speziierung, Reaktivität und Mobilität der jeweiligen Metall(oid)e. Umfassendes Wissen über das Vorkommen der verschiedenen Schwefelspezies und über Schwefel-Redoxprozesse trägt demzufolge maßgeblich zum Verständnis der biogeochemischen Kreisläufe von Metall(oid)en in der Umwelt bei.

Youtube-KanalKontakt aufnehmen
Diese Webseite verwendet Cookies. weitere Informationen